
Affine DeFi -
Multiplyr

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: September 19th, 2022 - October 7th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) IGNORE EXTERNAL CALL FEE - MEDIUM 15

Description 15

Code Location 15

Proof of Concept 16

Risk Level 17

Recommendation 17

Remediation Plan 17

3.2 (HAL-02) POSSIBLE LOSS OF FUNDS - MEDIUM 18

Description 18

Code Location 18

Proof of Concept 18

Risk Level 19

Recommendation 19

Remediation Plan 19

1

3.3 (HAL-03) POSSIBLE UNPREDICTABILITY BETWEEN L2 AND L1 RATIOS -

LOW 20

Description 20

Code Location 20

Risk Level 20

Recommendation 20

Remediation Plan 20

3.4 (HAL-04) FUNCTION DOES NOT CHECK THE TOKEN BALANCE BEFORE AND

AFTER A CALL - LOW 21

Description 21

Code Location 21

Risk Level 21

Recommendation 22

Remediation Plan 22

3.5 (HAL-05) LACK OF PROPER SLIPPAGE PROTECTION - INFORMATIONAL }

23

Description 23

Code Location 23

Risk Level 23

Recommendation 23

Remediation Plan 24

3.6 (HAL-06) POSSIBLE MISUSE OF CHAIN ID - INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 25

Recommendation 26

Remediation Plan 26

2

4 AUTOMATED TESTING 27

4.1 STATIC ANALYSIS REPORT 28

Description 28

Slither results 28

4.2 AUTOMATED SECURITY SCAN 47

Description 47

MythX results 47

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/04/2022 Omar Alshaeb

0.2 Draft Review 10/07/2022 Kubilay Onur Gungor

0.3 Draft Review 10/07/2022 Gabi Urrutia

1.0 Remediation Plan 10/26/2022 Omar Alshaeb

1.1 Remediation Plan Review 10/28/2022 Kubilay Onur Gungor

1.2 Remediation Plan Review 10/28/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com

Omar Alshaeb Halborn Omar.Alshaeb@halborn.com

5

mailto:Omar.Alshaeb@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Affine DeFi engaged Halborn to conduct a security audit on their smart

contracts beginning on September 19th, 2022 and ending on October 7th,

2022. The security assessment was scoped to the smart contracts provided

to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided three weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by the Affine DeFi team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

7

EX
EC

UT
IV

E
OV

ER
VI

EW

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• src/ethereum/L1CompoundStrategy.sol

• src/ethereum/L1Vault.sol

• src/ethereum/L1WormholeRouter.sol

• src/external/Multicall.sol

• src/interfaces/*

• src/polygon/Detailed.sol

• src/polygon/EmergencyWithdrawalQueue.sol

• src/polygon/ERC4626Router.sol

• src/polygon/ERC4626RouterBase.sol

• src/polygon/Forwarder.sol

• src/polygon/L2AAVEStrategy.sol

• src/polygon/L2Vault.sol

• src/polygon/L2WormholeRouter.sol

• src/polygon/Router.sol

• src/polygon/TwoAssetBasket.sol

• src/AffineGovernable.sol

• src/BaseStrategy.sol

• src/BaseVault.sol

• src/BridgeEscrow.sol

• src/Constants.sol

• src/DollarMath.sol

• src/WormholeRouter.sol

Commit ID: 30e93568ca0b0b458f8744bae1e62aaf1e132647

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Multiplyr/contracts/tree/audit-v2.1
https://github.com/Multiplyr/contracts/commit/30e93568ca0b0b458f8744bae1e62aaf1e132647

And the following smart contracts:

• src/ethereum/CurveStrategy.sol

• src/ethereum/ConvexStrategy.sol

• src/polygon/DeltaNeutralLp.sol

Commit ID: 06d6bc37fa80f0fdf794a8cb93e8100288d065e0

Fixed Commit ID: 06d6bc37fa80f0fdf794a8cb93e8100288d065e0

And the following smart contracts:

• src/BaseVault.sol

• src/ethereum/L1Vault.sol

• src/polygon/L2Vault.sol

Commit ID: 302ab4e2e54c2666d607be1b88861636fdee311d

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Multiplyr/contracts/tree/audit-v3
https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0
https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0
https://github.com/Multiplyr/contracts/tree/audit-v4
https://github.com/Multiplyr/contracts/commit/302ab4e2e54c2666d607be1b88861636fdee311d

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 2 2

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

(HAL-03)

(HAL-04)

(HAL-05)
(HAL-06)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - IGNORE EXTERNAL CALL FEE Medium SOLVED - 10/26/2022

HAL02 - POSSIBLE LOSS OF FUNDS Medium SOLVED - 10/26/2022

HAL03 - POSSIBLE UNPREDICTABILITY
BETWEEN L2 AND L1 RATIOS

Low RISK ACCEPTED

HAL04 - FUNCTION DOES NOT CHECK THE
TOKEN BALANCE BEFORE AND AFTER A

CALL
Low SOLVED - 10/26/2022

HAL05 - LACK OF PROPER SLIPPAGE
PROTECTION

Informational SOLVED - 10/26/2022

HAL06 - POSSIBLE MISUSE OF CHAIN ID Informational SOLVED - 10/26/2022

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) IGNORE EXTERNAL CALL
FEE - MEDIUM

Description:

The wormhole publishMessage function is payable. Currently, requires no

fees, but that can be changed over time. If the wormhole decides to

set a fee greater than 0, all those external calls within the protocol

would fail. Hence, leaving the wormhole routers unable to perform their

critical tasks.

Code Location:

Listing 1: L2WormholeRouter.sol (Line 33)

29 function reportTransferredFund(uint256 amount) external {

30 require(msg.sender == address(vault), "Only vault");

31 bytes memory payload = abi.encode(Constants.

ë L2_FUND_TRANSFER_REPORT , amount);

32 uint64 sequence = wormhole.nextSequence(address(this));

33 wormhole.publishMessage(uint32(sequence), payload ,

ë consistencyLevel);

34 }

35

Listing 2: L2WormholeRouter.sol (Line 40)

36 function requestFunds(uint256 amount) external {

37 require(msg.sender == address(vault), "Only vault");

38 bytes memory payload = abi.encode(Constants.L2_FUND_REQUEST ,

ë amount);

39 uint64 sequence = wormhole.nextSequence(address(this));

40 wormhole.publishMessage(uint32(sequence), payload ,

ë consistencyLevel);

41 }

42

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 3: L1WormholeRouter.sol (Line 37)

29 function reportTVL(uint256 tvl , bool received) external {

30 require(msg.sender == address(vault), "Only vault");

31 bytes memory payload = abi.encode(Constants.L1_TVL , tvl ,

ë received);

32 // NOTE: We use the current tx count (to wormhole) of this

ë contract

33 // as a nonce when publishing messages

34 // This casting is fine so long as we send less than 2 ** 32 -

ë 1 (~ 4 billion) messages

35 uint64 sequence = wormhole.nextSequence(address(this));

36

37 wormhole.publishMessage(uint32(sequence), payload ,

ë consistencyLevel);

38 }

39

Listing 4: L1WormholeRouter.sol (Line 45)

40 function reportTransferredFund(uint256 amount) external {

41 require(msg.sender == address(vault), "Only vault");

42 bytes memory payload = abi.encode(Constants.

ë L1_FUND_TRANSFER_REPORT , amount);

43 uint64 sequence = wormhole.nextSequence(address(this));

44

45 wormhole.publishMessage(uint32(sequence), payload ,

ë consistencyLevel);

46 }

47

Proof of Concept:

1. Wormhole publishMessage function increase its fee transaction

2. Affine DeFi wormhole routers fail to publish messages due to not

sending any fee on the transaction

3. Affine DeFi overall protocol does not properly work

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

Considering the need to call publishMessage, paying transaction fees is

strongly recommended.

Remediation Plan:

SOLVED: The Affine DeFi team solved the issue in commit:

06d6bc37fa80f0fdf794a8cb93e8100288d065e0

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0

3.2 (HAL-02) POSSIBLE LOSS OF
FUNDS - MEDIUM

Description:

Wormhole does not fail if the destination chain ID is different from

the one supposed to be. If the rebalancer bot calls this function

directly with a different chain ID, it will not fail, so funds during the

transactions can be lost.

You can check the Wormhole Chain IDs on each chain, which is not the same

as the network chain ID and can be easily confused.

Code Location:

Listing 5: WormholeRouter.sol (Line 43)

41 function _validateWormholeMessageEmitter(IWormhole.VM memory vm)

ë internal view {

42 require(vm.emitterAddress == bytes32(uint256(uint160(

ë otherLayerRouter))), "Wrong emitter address");

43 require(vm.emitterChainId == otherLayerChainId , "Wrong emitter

ë chain");

44 require(vm.nonce >= nextValidNonce , "Old transaction");

45 }

46

Proof of Concept:

1. Confuse wormhole chain ID with network chain ID

2. Initialize the contract with a wrong wormhole chain ID

3. Execute transactions on the protocol

4. Validate wormhole message emitter does not work as intended

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://book.wormhole.com/reference/contracts.html#core-bridge

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

Creating a Chain ID whitelist with all the possible Chain IDs or having

it hardcoded within the contract is recommended.

Remediation Plan:

SOLVED: The Affine DeFi team solved the issue in commit:

06d6bc37fa80f0fdf794a8cb93e8100288d065e0

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0

3.3 (HAL-03) POSSIBLE
UNPREDICTABILITY BETWEEN L2 AND L1
RATIOS - LOW

Description:

When setLayerRatios function is used to update the ratio between L1 and

L2, an invalid total ratio can be set (more than 100%). Hence, the

rebalancer bot could not properly work in those cases.

Code Location:

Listing 6: L2Vault.sol (Lines 450,451)

449 function setLayerRatios(uint256 _l1Ratio , uint256 _l2Ratio)

ë external onlyGovernance {

450 l1Ratio = _l1Ratio;

451 l2Ratio = _l2Ratio;

452 }

453

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

When setting the ratios, making sure the total ratio is equal to 100% is

recommended.

Remediation Plan:

RISK ACCEPTED: The Affine DeFi team accepted the risk of this finding.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) FUNCTION DOES NOT
CHECK THE TOKEN BALANCE BEFORE AND
AFTER A CALL - LOW

Description:

Whenever the exit function is used, the contract should check the token

balance before and after the call. So, the exact amount of tokens sent

can be properly checked.

Code Location:

Listing 7: BridgeEscrow.sol (Line 64)

60 function l1ClearFund(uint256 amount , bytes calldata exitProof)

ë external {

61 require(msg.sender == wormholeRouter , "Only wormhole router");

62

63 // Exit tokens , after that the withdrawn tokens from L2 will

ë be reflected in L1 BridgeEscrow.

64 rootChainManager.exit(exitProof);

65

66 // Transfer exited tokens to L1 Vault.

67 uint256 balance = token.balanceOf(address(this));

68 require(balance >= amount , "Funds not received");

69

70 IL1Vault l1Vault = IL1Vault(vault);

71 token.safeTransfer(address(l1Vault), balance);

72

73 l1Vault.afterReceive ();

74 }

75

Risk Level:

Likelihood - 2

Impact - 2

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Checking the token balance before and after the exit call is recommended.

Remediation Plan:

SOLVED: The Affine DeFi team solved the issue in commit:

06d6bc37fa80f0fdf794a8cb93e8100288d065e0

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0

3.5 (HAL-05) LACK OF PROPER SLIPPAGE
PROTECTION - INFORMATIONAL }

Description:

Within the _claimAndSellRewards function, the slippage protection of the

transaction is set to zero. Hence, if there is tiny liquidity, there is

a high risk of losing part of the investment.

Code Location:

Listing 8: L1CompoundStrategy.sol (Line 127)

122 function _claimAndSellRewards () internal {

123 comptroller.claimComp(address(this));

124 if (rewardToken != address(cToken)) {

125 uint256 rewardTokenBalance = balanceOfRewardToken ();

126 if (rewardTokenBalance >= minRewardToSell) {

127 _sellRewardTokenForWant(rewardTokenBalance , 0);

128 }

129 }

130 return;

131 }

132

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Setting at least 5% slippage protection is recommended.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Affine DeFi team solved the issue in commit:

06d6bc37fa80f0fdf794a8cb93e8100288d065e0

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0

3.6 (HAL-06) POSSIBLE MISUSE OF
CHAIN ID - INFORMATIONAL

Description:

When initializing the wormhole router, the wormhole chain ID can be

misused. As can be wrongly set due to confusion with the different

deployed chain IDs.

As mentioned on HAL02, you can check the Wormhole Chain IDs on each chain,

which is not the same as the network chain ID and can be easily confused.

Code Location:

Listing 9: L2WormholeRouter.sol (Line 26)

18 function initialize(IWormhole _wormhole , L2Vault _vault , address

ë _otherLayerRouter , uint16 _otherLayerChainId)

19 external

20 initializer

21 {

22 wormhole = _wormhole;

23 vault = _vault;

24 governance = vault.governance ();

25 otherLayerRouter = _otherLayerRouter;

26 otherLayerChainId = _otherLayerChainId;

27 }

28

Risk Level:

Likelihood - 1

Impact - 1

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://book.wormhole.com/reference/contracts.html#core-bridge

Recommendation:

As mentioned on HAL02, creating a Chain ID whitelist with all the possible

Chain IDs or having it hardcoded within the contract is recommended.

Remediation Plan:

SOLVED: The Affine DeFi team solved the issue in commit:

06d6bc37fa80f0fdf794a8cb93e8100288d065e0

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Multiplyr/contracts/commit/06d6bc37fa80f0fdf794a8cb93e8100288d065e0

27

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

src/ethereum/L1CompoundStrategy.sol

28

AU
TO

MA
TE

D
TE

ST
IN

G

29

AU
TO

MA
TE

D
TE

ST
IN

G

src/ethereum/L1Vault.sol

30

AU
TO

MA
TE

D
TE

ST
IN

G

src/ethereum/L1WormholeRouter.sol

31

AU
TO

MA
TE

D
TE

ST
IN

G

src/external/Multicall.sol

src/polygon/Detailed.sol

32

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/EmergencyWithdrawalQueue.sol

33

AU
TO

MA
TE

D
TE

ST
IN

G

34

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/ERC4626Router.sol

src/polygon/ERC4626RouterBase.sol

src/polygon/Forwarder.sol

src/polygon/L2AAVEStrategy.sol

35

AU
TO

MA
TE

D
TE

ST
IN

G

36

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/L2Vault.sol

37

AU
TO

MA
TE

D
TE

ST
IN

G

38

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/L2WormholeRouter.sol

39

AU
TO

MA
TE

D
TE

ST
IN

G

40

AU
TO

MA
TE

D
TE

ST
IN

G

src/AffineGovernable.sol

src/BaseStrategy.sol

41

AU
TO

MA
TE

D
TE

ST
IN

G

src/BaseVault.sol

42

AU
TO

MA
TE

D
TE

ST
IN

G

src/BridgeEscrow.sol

43

AU
TO

MA
TE

D
TE

ST
IN

G

src/Constants.sol

src/DollarMath.sol

44

AU
TO

MA
TE

D
TE

ST
IN

G

src/WormholeRouter.sol

45

AU
TO

MA
TE

D
TE

ST
IN

G

• As a result of the tests carried out with the Slither tool, some

results were obtained and reviewed by Halborn. Based on the re-

sults reviewed, some vulnerabilities were determined to be false

positives. The actual vulnerabilities found by Slither are already

included in the report findings.

46

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

src/ethereum/L1CompoundStrategy.sol

src/ethereum/L1Vault.sol

src/ethereum/L1WormholeRouter.sol

src/external/Multicall.sol

47

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/EmergencyWithdrawalQueue.sol

src/polygon/ERC4626Router.sol

src/polygon/ERC4626RouterBase.sol

src/polygon/Forwarder.sol

src/polygon/L2AAVEStrategy.sol

48

AU
TO

MA
TE

D
TE

ST
IN

G

src/polygon/L2Vault.sol

src/polygon/L2WormholeRouter.sol

src/AffineGovernable.sol

src/BaseStrategy.sol

src/BaseVault.sol

src/BridgeEscrow.sol

src/Constants.sol

src/DollarMath.sol

src/WormholeRouter.sol

49

AU
TO

MA
TE

D
TE

ST
IN

G

• No major issues found by Mythx. The floating pragma flagged by MythX

is a false positive, as the pragma is set in the hardhat.config.ts

file to the 0.8.16 version.

50

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	}
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

